CHANDLER W. WOO

PHONE: 626-848-6226

PORTFOLIO: www.chandlerwoo.com LINKEDIN: www.linkedin.com/in/chandler-woo/ EMAIL: chandler.w.woo@gmail.com

SUMMARY

- Driven, self-starting biomedical engineer seeking further experience in sales & marketing products that will have a significant impact in the medical device industry
- Quick ability to adapt in professional and social exchanges, guided by a strong attention to detail and willingness to seek new challenges
- Skilled using MATLAB for mathematical and statistical analysis, AutoCAD, Python, FEBio, HTML5, JavaScript, and Office

EDUCATION

RICE UNIVERSITY HOUSTON, TX

Masters of Bioengineering, Global Medical Innovation (GMI) Tract

Expected May 2018

Focus of medical device innovation and implementation within emerging-markets, with two (2) primary projects that reflect both the design and applications phases of medical device development

UNIVERSITY OF ROCHESTER

ROCHESTER, NY

Bachelor of Science in Biomedical Engineering, Concentration in Biomechanics GPA: 3.55/4.0

May 2017

- Executive Board Member; Upperclassmen Hall Council, Sigma Chi Fraternity, Newman Catholic Community
- Member of Solar Splash, Engineers without Borders, Biomedical Engineering Society, Ultimate Frisbee Club Team
- Teaching Assistant: Introduction to Biomedical Engineering; Human Anatomy; Signals, Systems, and Imaging
- Awards: Eagle Scout, Dean's Scholarship Recipient, Dean's List (4 semesters), Graduated with High Distinction

WORK EXPERIENCE

Engineering Intern

FANNIN INNOVATION STUDIO

HOUSTON, TX

October 2017 - Present

- Conducting market analysis and developing business models for medical device portfolio companies, as well as conducting IP assessments and recommendations for future portfolio products
- Developing test methods and protocols for animal studies with Fannin's medical device product surrounding pediatric ureteral stents

BOSTON SCIENTIFIC CORPORATION

HEREDIA, COSTA RICA

R&D Neuromodulation Intern

July 2017 – August 2017

- Developed computational model of BSC's battery for their implantable pulse generator (IPG) to analyze factors that contribute to efficiency of energy transfer between the charger and the IPG
- Generated a portfolio of future device iterations and test platforms to analyze factors that aim to increase charging efficiency

BUCKLEY LAB, URMC

ROCHESTER, NY

September 2015 – May 2017

- Undergraduate Research Assistant Utilized confocal microscopy to analyze force distributions of murine femoral condyles under mechanical loading
- Developed MATLAB code to directly measure cartilage strain under different loading conditions and use inverse finite element analysis to obtain material properties and boundary conditions of murine cartilage
- Kotelsky, A., Woo, C.W., Delgadillo, L.F., Richards, M.S., Buckley, M.R. (2017) "An Alternative Method to Characterize the Quasi-Static, Non-linear Material Properties of Murine Articular Cartilage." J. Biomech Eng. BIO-16-1515. (In Print).

IDEALAB PASADENA, CA

Summer Engineering Intern

Summer 2014, 2015

- Operated machine shop tools and SolidWorks to devise novel product prototypes
- Self-directed projects include, but not limited to, optimizing angles of 100 mirror array to centralize light on single point for solar tower design consideration; designing heat retentive system for effective water desalination

SELECTED PROJECTS

- Proteus Medical (Senior Capstone Project): Developed novel veterinary endoscopic retrieval device to improve foreign body retrieval while reducing cost for the veterinarian. Designed prototypes for DFMA in SolidWorks and developed business plan for competition
 - * 1st Place: Mark Ain Business Model Competition; 2nd Place: Charles and Janet Forbes Entrepreneurial Competition
- Artificial Touch (Circuits Project): Designed an artificial touch sensor, suitable for a Raptor 3-D printed hand, to sense pressure at the "fingertip" and deliver a signal to the hand. Analyzed circuit design using OrCAD to calculate appropriate frequency response for a Pacinian Corpuscle; crafted final design onto a circuit board using general design considerations
- Child Hearing Test (MATLAB Project): Directed a 3-person team to design a hearing test for young children in MATLAB. Identified considerations for project such as maintaining the child's interest with a reward system as well as determining the subject's average threshold through both 2-down-1-up and reversal algorithms